Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46.850
Filtrar
1.
Arch Microbiol ; 206(5): 212, 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38616221

RESUMEN

Biofilms are complex communities of microorganisms enclosed in a self-produced extracellular matrix, posing a significant threat to different sectors, including healthcare and industry. This review provides an overview of the challenges faced due to biofilm formation and different novel strategies that can combat biofilm formation. Bacteria inside the biofilm exhibit increased resistance against different antimicrobial agents, including conventional antibiotics, which can lead to severe problems in livestock and animals, including humans. In addition, biofilm formation also imposes heavy economic pressure on industries. Hence it becomes necessary to explore newer alternatives to eradicate biofilms effectively without applying selection pressure on the bacteria. Excessive usage of antibiotics may also lead to an increase in the number of resistant strains as bacteria employ an advanced antimicrobial resistance mechanism. This review provides insight into multifaceted technologies like quorum sensing inhibition, enzymes, antimicrobial peptides, bacteriophage, phytocompounds, and nanotechnology to neutralize biofilms without developing antimicrobial resistance (AMR). Furthermore, it will pave the way for developing newer therapeutic agents to deal with biofilms more efficiently.


Asunto(s)
Bacteriófagos , Biopelículas , Animales , Humanos , Percepción de Quorum , Antibacterianos/farmacología , Matriz Extracelular
2.
J Nepal Health Res Counc ; 21(4): 636-641, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38616595

RESUMEN

BACKGROUND: Coagulase Negative Staphylococci have been widely associated with medical device implant treatment and immune-compromised patients. Despite having increasing interest in Coagulase Negative Staphylococci, few studies from Nepal have reported the association of these organisms with urinary tract infections, conjunctivitis, high vaginal swabs, and cerebrospinal fluid. This study was carried out to determine antibiotic susceptibility pattern and biofilm production among Coagulase Negative Staphylococci isolated from clinical samples at tertiary care hospital. METHODS: This study was a hospital based cross-sectional study in which 3690 clinical samples were included. Isolation and identification of isolates was done following standard microbiological protocol. Coagulase Negative Staphylococci were identified phenotypically on the basis of gram staining, slide and tube coagulase test and by various sugar fermentation tests. Antibiotic susceptibility test was done following Kirby Bauer disk diffusion method (Clinical and Laboratory Standards Institute 2020). Biofilm production was determined by Tissue Culture Plate technique. RESULTS: A total of 113 isolates of Coagulase Negative Staphylococci were detected. Among them S. epidermidis (45.1%), S. saprophyticus (23.9%), S. haemolyticus (16.8%), S. hominis (5.3%), S. capitis (2.7%), -----S. cohini (1.8%), S. lugdunensis (1.8%) and S. sciuri (2.7%) were identified phenotypically. All isolates were found to be resistant against Ampicillin and 111 (98.2%) were sensitive against Linezolid.23.9% of CoNS were strong biofilm producers, 19.5% moderate and 56.6 % were non/weak biofilm producers. CONCLUSIONS: It requires susceptibility test for prescribing antibiotics against Coagulase Negative Staphylococci in hospital and the misuse of antibiotics should be prevented.


Asunto(s)
Coagulasa , Staphylococcus , Femenino , Humanos , Estudios Transversales , Centros de Atención Terciaria , Nepal , Antibacterianos/farmacología , Biopelículas
3.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38612647

RESUMEN

Impaired healing wounds do not proceed through the normal healing processes in a timely and orderly manner, and while they do eventually heal, their healing is not optimal. Chronic wounds, on the other hand, remain unhealed for weeks or months. In the US alone, chronic wounds impact ~8.5 million people and cost ~USD 28-90 billion per year, not accounting for the psychological and physical pain and emotional suffering that patients endure. These numbers are only expected to rise in the future as the elderly populations and the incidence of comorbidities such as diabetes, hypertension, and obesity increase. Over the last few decades, scientists have used a variety of approaches to treat chronic wounds, but unfortunately, to date, there is no effective treatment. Indeed, while there are thousands of drugs to combat cancer, there is only one single drug approved for the treatment of chronic wounds. This is in part because wound healing is a very complex process involving many phases that must occur sequentially and in a timely manner. Furthermore, models that fully mimic human chronic wounds have not been developed. In this review, we assess various models currently being used to study the biology of impaired healing and chronic non-healing wounds. Among them, this paper also highlights one model which shows significant promise; this model uses aged and obese db/db-/- mice and the chronic wounds that develop show characteristics of human chronic wounds that include increased oxidative stress, chronic inflammation, damaged microvasculature, abnormal collagen matrix deposition, a lack of re-epithelialization, and the spontaneous development of multi-bacterial biofilm. We also discuss how important it is that we continue to develop chronic wound models that more closely mimic those of humans and that can be used to test potential treatments to heal chronic wounds.


Asunto(s)
Ansiedad , Cicatrización de Heridas , Animales , Anciano , Ratones , Humanos , Biopelículas , Emociones , Modelos Animales , Obesidad
4.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38612672

RESUMEN

Acinetobacter baumannii is a major cause of nosocomial infections, and its highly adaptive nature and broad range of antibiotic resistance enable it to persist in hospital environments. A. baumannii often employs two-component systems (TCSs) to regulate adaptive responses and virulence-related traits. This study describes a previously uncharacterized TCS in the A. baumannii ATCC19606 strain, consisting of a transcriptional sensor, DJ41_1407, and its regulator, DJ41_1408, located adjacent to GacA of the GacSA TCS. Markerless mutagenesis was performed to construct DJ41_1407 and DJ41_1408 single and double mutants. DJ41_1408 was found to upregulate 49 genes and downregulate 43 genes, most of which were associated with carbon metabolism and other metabolic pathways, such as benzoate degradation. MEME analysis revealed a putative binding box for DJ41_1408, 5'TGTAAATRATTAYCAWTWAT3'. Colony size, motility, biofilm-forming ability, virulence, and antibiotic resistance of DJ41_1407 and DJ41_1408 single and double mutant strains were assessed against wild type. DJ41_1407 was found to enhance motility, while DJ41_1408 was found to upregulate biofilm-forming ability, and may also modulate antibiotic response. Both DJ41_1407 and DJ41_1408 suppressed virulence, based on results from a G. mellonella infection assay. These results showcase a novel A. baumannii TCS involved in metabolism, with effects on motility, biofilm-forming ability, virulence, and antibiotic response.


Asunto(s)
Acinetobacter baumannii , Acinetobacter baumannii/genética , Virulencia/genética , Antibacterianos/farmacología , Biopelículas , Bioensayo
5.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38612793

RESUMEN

The evolution of regulatory perspectives regarding the health and nutritional properties of industrial hemp-based products (Cannabis sativa L.) has pushed research to focus on the development of new methods for both the extraction and formulation of the bioactive compounds present in hemp extracts. While the psychoactive and medicinal properties of hemp-derived cannabinoid extracts are well known, much less has been investigated on the functional and antimicrobial properties of hemp extracts. Within the hemp value chain, various agricultural wastes and by-products are generated. These materials can be valorised through eco-innovations, ultimately promoting sustainable economic development. In this study, we explored the use of waste from industrial light cannabis production for the extraction of bioactive compounds without the addition of chemicals. The five extracts obtained were tested for their antimicrobial activity on both planktonic and sessile cells of pathogenic strains of the Candida albicans, Candida parapsilosis, and Candida tropicalis species and for their antioxidant activity on HT-29 colon cancer cells under oxidative stress. Our results demonstrated that these extracts display interesting properties both as antioxidants and in hindering the development of fungal biofilm, paving the way for further investigations into the sustainable valorisation of hemp waste for different biomedical applications.


Asunto(s)
Antiinfecciosos , Cannabis , Neoplasias del Colon , Candida , Antioxidantes/farmacología , Adherencias Tisulares , Biopelículas , Residuos Industriales
6.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38612931

RESUMEN

Citrocin is an anti-microbial peptide that holds great potential in animal feed. This study evaluates the anti-microbial and anti-biofilm properties of Citrocin and explores the mechanism of action of Citrocin on the biofilm of P. aeruginosa. The results showed that Citrocin had a significant inhibitory effect on the growth of P. aeruginosa with a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 0.3 mg/mL. All five concentrations (1/4MIC, 1/2MIC, MIC, 2MIC, and 4MIC) of Citrocin inhibited P. aeruginosa biofilm formation. Citrocin at the MIC, 2MIC and 4MIC removed 42.7%, 76.0% and 83.2% of mature biofilms, respectively, and suppressed the swarming motility, biofilm metabolic activity and extracellular polysaccharide production of P. aeruginosa. Metabolomics analysis indicated that 0.3 mg/mL of Citrocin up- regulated 26 and down-regulated 83 metabolites, mainly comprising amino acids, fatty acids, organic acids and sugars. Glucose and amino acid metabolic pathways, including starch and sucrose metabolism as well as arginine and proline metabolism, were highly enriched by Citrocin. In summary, our research reveals the anti-biofilm mechanism of Citrocin at the metabolic level, which provides theoretical support for the development of novel anti-biofilm strategies for combatting P. aeruginosa.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Animales , Polisacáridos , Almidón , Aminoácidos , Biopelículas , Péptidos
7.
Vet Med Sci ; 10(3): e1440, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38613443

RESUMEN

BACKGROUND: Honey exhibits a broad spectrum of antibacterial activity against Gram-positive and Gram-negative bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) ones. Chitosan (Cs) is a mucoadhesive polymer that also has antibacterial properties. Special attention has been paid to the design of polymeric nanoparticles (NPs) as new nano drug delivery systems to overcome bacterial resistance and its problems. OBJECTIVES: The aim of the present study is to synthesize Cs-meropenem NPs with/without honey as an antibiofilm and antibacterial agent to inhibit Staphylococcus aureus. METHODS: This study synthesized meropenem and honey-loaded Cs nanogels and subsequently characterized them by Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform Infrared Spectroscopy (FTIR), and DLS-zeta potential. Using the broth microdilution and crystal violet assays, the antibacterial and antibiofilm activity of meropenem and honey-loaded Cs nanogel, free meropenem, free honey, and free Cs NPs were investigated in vitro against MRSA strains. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) was also used to test the cytotoxicity of several Cs-NPs compound against the HEK-293 regular cell line. RESULTS: The average size of meropenem and honey-Cs-NPs was reported to be 119.885 nm, and encapsulation efficiency was 88.33 ± 0.97 with stability up to 60 days at 4°C. The NPs showed enhanced antibiofilm efficacy against S. aureus at sub-minimum inhibitory concentrations. Additionally, the cytotoxicity of meropenem and honey-encapsulated Cs against the HEK-293 normal cell line was insignificant. CONCLUSIONS: Our findings suggested that meropenem and honey-Cs-NPs might be potential antibacterial and antibiofilm materials.


Asunto(s)
Antiinfecciosos , Quitosano , Miel , Staphylococcus aureus Resistente a Meticilina , Nanopartículas , Infecciones Estafilocócicas , Animales , Humanos , Meropenem/farmacología , Staphylococcus aureus , Antibacterianos/farmacología , Quitosano/farmacología , Células HEK293 , Bacterias Gramnegativas , Bacterias Grampositivas , Infecciones Estafilocócicas/veterinaria , Biopelículas
8.
Curr Microbiol ; 81(6): 141, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38625380

RESUMEN

Legionella pneumophila can be transmitted to people, especially immunocompromised patients, via hospital water pipe systems and cause severe pneumonia. The aim of our study was to investigate the presence of major virulence factor genes, ability of biofilms formation, and correlation between presence of Legionella isolates and temperature, pH, and residual chlorine of water. Hundred water samples were collected from nine hospitals in Tehran, Iran. Temperature, pH, and residual chlorine were determined during sampling. Different virulence genes and the ability to form biofilms were subsequently analyzed among the L. pneumophila isolates. Results showed that 12 (12%) samples were positive in culture method and all of the isolates were positive as L. pneumophila species (mip). A correlation was found between Legionella culture positivity and temperature and pH of water, but there was no significant correlation between residual chlorine of water samples and the presence of Legionella. The isolation of Legionella rate in summer and spring was higher than winter and autumn. Twelve (100%) isolates were positive for mip genes, 9 (75%) for dot genes, 8 (66.66%) for hsp, 6 (50%) for lvh, and 4 (33.33%) for rtx. All of the isolates displayed strong ability for biofilm production every three days. Two of these isolates (16.6%) displayed weak ability to form biofilm on the first day of incubation. This study revealed that water sources in hospitals were colonized by virulent Legionella and should be continuously monitored to avoid elevated concentrations of Legionella with visible biofilm formation.


Asunto(s)
Legionella pneumophila , Legionella , Humanos , Legionella pneumophila/genética , Virulencia/genética , Cloro/farmacología , Irán , Biopelículas , Hospitales
9.
Front Cell Infect Microbiol ; 14: 1340910, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606300

RESUMEN

Vibrios are associated with live seafood because they are part of the indigenous marine microflora. In Asia, foodborne infections caused by Vibrio spp. are common. In recent years, V. parahaemolyticus has become the leading cause of all reported food poisoning outbreaks. Therefore, the halogenated acid and its 33 derivatives were investigated for their antibacterial efficacy against V. parahaemolyticus. The compounds 3,5-diiodo-2-methoxyphenylboronic acid (DIMPBA) and 2-fluoro-5-iodophenylboronic acid (FIPBA) exhibited antibacterial and antibiofilm activity. DIMPBA and FIPBA had minimum inhibitory concentrations of 100 µg/mL for the planktonic cell growth and prevented biofilm formation in a dose-dependent manner. Both iodo-boric acids could diminish the several virulence factors influencing the motility, agglutination of fimbria, hydrophobicity, and indole synthesis. Consequently, these two active halogenated acids hampered the proliferation of the planktonic and biofilm cells. Moreover, these compounds have the potential to effectively inhibit the presence of biofilm formation on the surface of both squid and shrimp models.


Asunto(s)
Ácidos Borónicos , Vibrio parahaemolyticus , Vibrio , Biopelículas , Factores de Virulencia/farmacología , Antibacterianos/farmacología
10.
Food Res Int ; 184: 114232, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38609218

RESUMEN

Listeria monocytogenes is a common foodborne pathogen that frequently causes global outbreaks. In this study, the growth characteristics, biofilm formation ability, motility ability and whole genome of 26 L. monocytogenes strains isolated from food and clinical samples in Shanghai (China) from 2020 to 2022 were analyzed. There are significant differences among isolates in terms of growth, biofilm formation, motility, and gene expression. Compared with other sequence type (ST) types, ST1930 type exhibited a significantly higher maximum growth rate, the ST8 type demonstrated a stronger biofilm formation ability, and the ST121 type displayed greater motility ability. Furthermore, ST121 exhibited significantly high mRNA expression levels compared with other ST types in virulence genes mpl, fbpA and fbpB, the quorum sensing gene luxS, starvation response regulation gene relA, and biofilm adhesion related gene bapL. Whole-genome sequencing (WGS) analyses indicated the isolates of lineage I were mostly derived from clinical, and the isolates of lineage II were mostly derived from food. The motility ability, along with the expression of genes associated with motility (motA and motB), exhibited a significantly higher level in lineage II compared with lineage I. The isolates from food exhibited significantly higher motility ability compared with isolates from clinical. By integrating growth, biofilm formation, motility phenotype with molecular and genotyping information, it is possible to enhance comprehension of the association between genes associated with these characteristics in L. monocytogenes.


Asunto(s)
Bagres , Listeria monocytogenes , Animales , China , Listeria monocytogenes/genética , Alimentos , Biopelículas
11.
Microb Cell Fact ; 23(1): 107, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609931

RESUMEN

Cryptococcus neoformans has been designated as critical fungal pathogens by the World Health Organization, mainly due to limited treatment options and the prevalence of antifungal resistance. Consequently, the utilization of novel antifungal agents is crucial for the effective treatment of C. neoformans infections. This study exposed that the minimum inhibitory concentration (MIC) of isobavachalcone (IBC) against C. neoformans H99 was 8 µg/mL, and IBC dispersed 48-h mature biofilms by affecting cell viability at 16 µg/mL. The antifungal efficacy of IBC was further validated through microscopic observations using specific dyes and in vitro assays, which confirmed the disruption of cell wall/membrane integrity. RNA-Seq analysis was employed to decipher the effect of IBC on the C. neoformans H99 transcriptomic profiles. Real-time quantitative reverse transcription PCR (RT-qPCR) analysis was performed to validate the transcriptomic data and identify the differentially expressed genes. The results showed that IBC exhibited various mechanisms to impede the growth, biofilm formation, and virulence of C. neoformans H99 by modulating multiple dysregulated pathways related to cell wall/membrane, drug resistance, apoptosis, and mitochondrial homeostasis. The transcriptomic findings were corroborated by the antioxidant analyses, antifungal drug sensitivity, molecular docking, capsule, and melanin assays. In vivo antifungal activity analysis demonstrated that IBC extended the lifespan of C. neoformans-infected Caenorhabditis elegans. Overall, the current study unveiled that IBC targeted multiple pathways simultaneously to inhibit growth significantly, biofilm formation, and virulence, as well as to disperse mature biofilms of C. neoformans H99 and induce cell death.


Asunto(s)
Chalconas , Criptococosis , Cryptococcus neoformans , Animales , Cryptococcus neoformans/genética , Antifúngicos/farmacología , RNA-Seq , Simulación del Acoplamiento Molecular , Biopelículas , Caenorhabditis elegans
12.
J Nanobiotechnology ; 22(1): 173, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609944

RESUMEN

Depression is a mood disorder mainly clinically characterized by significant and persistent low spirits. Chronic stress is the leading cause of depression. However, traditional medicine has severe side effects in treating depression, ineffective treatment, and easy recurrence. Therefore, it is of great significance to prevent depression in the environment of chronic stress. In this study, aromatherapy was used for the prevention of depression. To solve the defects of intense volatility and inconvenience in using essential oils, we designed bionic nano-aromatic drugs and adhered them to the wallpaper. Inspired by the moldy wallpaper, we successively prepared the morphology-bionic nano-aromatic drugs, the function-bionic nano-aromatic drugs, and the bionic plus nano-aromatic drugs by referring to the morphology of microorganisms and substances in bacterial biofilms. Bionic nano-aromatic drugs remarkably promoted their adhesion on wallpaper. Molecular dynamics simulation explored its molecular mechanism. The essential oils, which were slowly released from the bionic nano-aromatic drugs, showed excellent biosecurity and depression prevention. These sustainedly released essential oils could significantly increase monoamine neurotransmitters in the brain under a chronic stress environment and had excellent neuroprotection. Besides, the bionic nano-aromatic drugs with simple preparation process and low cost had excellent application potential.


Asunto(s)
Biónica , Aceites Volátiles , Depresión/tratamiento farmacológico , Depresión/prevención & control , Biopelículas , Encéfalo
13.
Sensors (Basel) ; 24(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38610253

RESUMEN

Confronting the challenge of biofilm resistance and widespread antimicrobial resistance (AMR), this study emphasizes the need for innovative monitoring methods and explores the potential of bacteriophages against bacterial biofilms. Traditional methods, like optical density (OD) measurements and confocal microscopy, crucial in studying biofilm-virus interactions, often lack real-time monitoring and early detection capabilities, especially for biofilm formation and low bacterial concentrations. Addressing these gaps, we developed a new real-time, label-free radiofrequency sensor for monitoring bacteria and biofilm growth. The sensor, an open-ended coaxial probe, offers enhanced monitoring of bacterial development stages. Tested on a biological model of bacteria and bacteriophages, our results indicate the limitations of traditional OD measurements, influenced by factors like sedimented cell fragments and biofilm formation on well walls. While confocal microscopy provides detailed 3D biofilm architecture, its real-time monitoring application is limited. Our novel approach using radio frequency measurements (300 MHz) overcomes these shortcomings. It facilitates a finer analysis of the dynamic interaction between bacterial populations and phages, detecting real-time subtle changes. This method reveals distinct phases and breakpoints in biofilm formation and virion interaction not captured by conventional techniques. This study underscores the sensor's potential in detecting irregular viral activity and assessing the efficacy of anti-biofilm treatments, contributing significantly to the understanding of biofilm dynamics. This research is vital in developing effective monitoring tools, guiding therapeutic strategies, and combating AMR.


Asunto(s)
Bacteriófagos , Infecciones por Pseudomonas , Animales , Pseudomonas aeruginosa , Conducta Predatoria , Biopelículas
14.
Proc Natl Acad Sci U S A ; 121(17): e2315361121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38621130

RESUMEN

Biofilms inhabit a range of environments, such as dental plaques or soil micropores, often characterized by noneven surfaces. However, the impact of surface irregularities on the population dynamics of biofilms remains elusive, as most experiments are conducted on flat surfaces. Here, we show that the shape of the surface on which a biofilm grows influences genetic drift and selection within the biofilm. We culture Escherichia coli biofilms in microwells with a corrugated bottom surface and observe the emergence of clonal sectors whose size corresponds to that of the corrugations, despite no physical barrier separating different areas of the biofilm. The sectors are remarkably stable and do not invade each other; we attribute this stability to the characteristics of the velocity field within the biofilm, which hinders mixing and clonal expansion. A microscopically detailed computer model fully reproduces these findings and highlights the role of mechanical interactions such as adhesion and friction in microbial evolution. The model also predicts clonal expansion to be limited even for clones with a significant growth advantage-a finding which we confirm experimentally using a mixture of antibiotic-sensitive and antibiotic-resistant mutants in the presence of sublethal concentrations of the antibiotic rifampicin. The strong suppression of selection contrasts sharply with the behavior seen in range expansion experiments in bacterial colonies grown on agar. Our results show that biofilm population dynamics can be affected by patterning the surface and demonstrate how a better understanding of the physics of bacterial growth can be used to control microbial evolution.


Asunto(s)
Antibacterianos , Biopelículas , Bacterias , Rifampin/farmacología , Escherichia coli/genética , Adhesión Bacteriana
15.
Zhongguo Zhong Yao Za Zhi ; 49(3): 653-660, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621869

RESUMEN

Quorum sensing system regulates the expression of genes related to bacterial growth, metabolism and other behaviors by sensing bacterial density, and controls the unified action of the entire bacterial population. This mechanism can ensure the normal secretion of bacterial metabolites and the stability of the biofilm microenvironment, providing protection for the formation of biofilms and the normal growth and reproduction of bacteria. Traditional Chinese medicine, capable of quorum sensing inhibition, can inhibit the formation of bacterial biofilms, reduce bacterial resistance, and enhance the anti-infection ability of antibiotics when combined with antibiotics. In recent years, the combination of traditional Chinese and Western medicine in the treatment of drug-resistant bacterial infections has become a research hotspot. Starting with the associations between quorum sensing, biofilm and drug-resistant bacteria, this paper reviews the relevant studies about the combined application of traditional Chinese medicines as quorum sensing inhibitors with antibiotics in the treatment of drug-resistant bacteria. This review is expected to provide ideas for the development of new clinical treatment methods and novel anti-infection drugs.


Asunto(s)
Infecciones Bacterianas , Percepción de Quorum , Humanos , Percepción de Quorum/genética , Medicina Tradicional China , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias/genética , Biopelículas , Infecciones Bacterianas/tratamiento farmacológico
16.
J Agric Food Chem ; 72(15): 8521-8535, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38565849

RESUMEN

Thirty-five norsesquiterpenoids were isolated from the fermentation broth of Streptomyces microflavus from the forest soil of Ailaoshan in China. The structures of new compounds (1-5, 10-26) were elucidated by comprehensive spectroscopic analysis including data from experimental and calculated ECD spectra, as well as Mosher's reagent derivatives method. Norsesquiterpenoids showed different levels of antifungal activity with MIC80 values ranging from 25 to 200 µg/mL against Candida albicans, Candida parapsilosis, and Cryptococcus neoformans. The combining isolated norsesquiterpenoids with amphotericin B resulted in a synergistic interaction against test yeast-like fungi with a fractional inhibitory concentration index < 0.5. Compound 33 significantly inhibited biofilm formation and destroyed the preformed biofilm of fungi. Moreover, 33 downregulated the expression of adhesion-related genes HWP1, ALS1, ALS3, ECE1, EAP1, and BCR1 to inhibit the adhesion of C. albicans. Findings from the current study highlight the potential usage of norsesquiterpenoids from soil-derived Streptomyces for antifungal leads discovery.


Asunto(s)
Antifúngicos , Streptomyces , Antifúngicos/farmacología , Anfotericina B/farmacología , Candida albicans , Streptomyces/genética , Biopelículas , Pruebas de Sensibilidad Microbiana
17.
J Med Microbiol ; 73(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38567642

RESUMEN

Introduction. Staphylococcus aureus is the leading cause of acute medical implant infections, representing a significant modern medical concern. The success of S. aureus as a pathogen in these cases resides in its arsenal of virulence factors, resistance to multiple antimicrobials, mechanisms of immune modulation, and ability to rapidly form biofilms associated with implant surfaces. S. aureus device-associated, biofilm-mediated infections are often persistent and notoriously difficult to treat, skewing innate immune responses to promote chronic reoccurring infections. While relatively little is known of the role neutrophils play in response to acute S. aureus biofilm infections, these effector cells must be efficiently recruited to sites of infection via directed chemotaxis. Here we investigate the effects of modulating CXC chemokine receptor 2 (CXCR2) activity, predominantly expressed on neutrophils, during S. aureus implant-associated infection.Hypothesis. We hypothesize that modulation of CXCR2 expression and/or signalling activities during S. aureus infection, and thus neutrophil recruitment, extravasation and antimicrobial activity, will affect infection control and bacterial burdens in a mouse model of implant-associated infection.Aim. This investigation aims to elucidate the impact of altered CXCR2 activity during S. aureus biofilm-mediated infection that may help develop a framework for an effective novel strategy to prevent morbidity and mortality associated with implant infections.Methodology. To examine the role of CXCR2 during S. aureus implant infection, we employed a mouse model of indwelling subcutaneous catheter infection using a community-associated methicillin-resistant S. aureus (MRSA) strain. To assess the role of CXCR2 induction or inhibition during infection, treatment groups received daily intraperitoneal doses of either Lipocalin-2 (Lcn2) or AZD5069, respectively. At the end of the study, catheters and surrounding soft tissues were analysed for bacterial burdens and dissemination, and Cxcr2 transcription within the implant-associated tissues was quantified.Results. Mice treated with Lcn2 developed higher bacterial burdens within the soft tissue surrounding the implant site, which was associated with increased Cxcr2 expression. AZD5069 treatment also resulted in increased implant- and tissues-associated bacterial titres, as well as enhanced Cxcr2 expression.Conclusion. Our results demonstrate that CXCR2 plays an essential role in regulating the severity of S. aureus implant-associated infections. Interestingly, however, perturbation of CXCR2 expression or signalling both resulted in enhanced Cxcr2 transcription and elevated implant-associated bacterial burdens. Thus, CXCR2 appears finely tuned to efficiently recruit effector cells and mediate control of S. aureus biofilm-mediated infection.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Pirimidinas , Infecciones Estafilocócicas , Sulfonamidas , Ratones , Animales , Staphylococcus aureus/fisiología , Staphylococcus aureus Resistente a Meticilina/fisiología , Receptores de Interleucina-8B/genética , Infecciones Estafilocócicas/microbiología , Biopelículas
18.
Water Sci Technol ; 89(6): 1454-1465, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38557711

RESUMEN

We used bench-scale tests and mathematical modeling to explore chemical oxygen demand (COD) removal rates in a moving-bed biofilm reactor (MBBR) for winery wastewater treatment, using either urea or nitrate as a nitrogen source. With urea addition, the COD removal fluxes ranged from 34 to 45 gCOD/m2-d. However, when nitrate was added, fluxes increased up to 65 gCOD/m2-d, twice the amount reported for aerobic biofilms for winery wastewater treatment. A one-dimensional biofilm model, calibrated with data from respirometric tests, accurately captured the experimental results. Both experimental and modelling results suggest that nitrate significantly increased MBBR capacity by stimulating COD oxidation in the deeper, oxygen-limited regions of the biofilm. Our research suggests that the addition of nitrate, or other energetic and broadly used electron acceptors, may provide a cost-effective means of covering peak COD loads in biofilm processes for winery or another industrial wastewater treatment.


Asunto(s)
Eliminación de Residuos Líquidos , Purificación del Agua , Eliminación de Residuos Líquidos/métodos , Nitratos , Biopelículas , Reactores Biológicos , Compuestos Orgánicos , Purificación del Agua/métodos , Nitrógeno , Urea , Desnitrificación
19.
Water Sci Technol ; 89(6): 1583-1594, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38557720

RESUMEN

Low-energy nitrogen removal from ammonium-rich wastewater is crucial in preserving the water environment. A one-stage nitritation/anammox process with two inflows treating ammonium-containing wastewater, supplied from inside and outside the wound filter, is expected to stably remove nitrogen. Laboratory-scale reactors were operated using different start-up strategies; the first involved adding nitritation inoculum after anammox biomass formation in the filter, which presented a relatively low nitrogen removal rate (0.171 kg N/m3 · d), at a nitrogen loading rate of 1.0 kg N/m3 · d. Conversely, the second involved the gradual cultivation of anammox and nitritation microorganisms, which increased the nitrogen removal rate (0.276 kg N/m3 · d). Furthermore, anammox (Candidatus Brocadia) and nitritation bacteria (Nitrosomonadaceae) coexisted in the biofilm formed on the filter surface. The abundance of nitritation bacteria (10.5%) in the reactor biofilm using the second start-up strategy was higher than that using the first (3.7%). Thus, the two-inflow nitritation/anammox process effectively induced habitat segregation using a suitable start-up strategy.


Asunto(s)
Compuestos de Amonio , Microbiota , Aguas Residuales , Oxidación Anaeróbica del Amoníaco , Oxidación-Reducción , Reactores Biológicos/microbiología , Bacterias , Biopelículas , Nitrógeno , Aguas del Alcantarillado , Desnitrificación
20.
J Wound Care ; 33(Sup4a): xcix-cx, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38588056

RESUMEN

Metal-based nanoparticles (MNPs) are promoted as effective compounds in the treatment of bacterial infections and as possible alternatives to antibiotics. These MNPs are known to affect a broad spectrum of microorganisms using a multitude of strategies, including the induction of reactive oxygen species and interaction with the inner structures of the bacterial cells. The aim of this review was to summarise the latest studies about the effect of metal-based nanoparticles on pathogenic bacterial biofilm formed in wounds, using the examples of Gram-positive bacterium Staphylococcus aureus and Gram-negative bacterium Pseudomonas aeruginosa, as well as provide an overview of possible clinical applications.


Asunto(s)
Nanopartículas , Infecciones Estafilocócicas , Infección de Heridas , Humanos , Biopelículas , Staphylococcus aureus , Antibacterianos/uso terapéutico , Antibacterianos/farmacología , Pseudomonas aeruginosa , Nanopartículas/uso terapéutico , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...